metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido(4,4',4"-tri-*tert*-butyl-2,2':6',2"terpyridine)platinum(II) chloride toluene monosolvate

Rami J. Batrice,^a Vladimir N. Nesterov^b and Bradley W. Smucker^a*

^aDepartment of Chemistry, Austin College, 900 North Grand, Sherman, TX 75090-4400, USA, and ^bDepartment of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5070, USA Correspondence e-mail: bsmucker@austincollege.edu

Received 5 October 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.032; wR factor = 0.108; data-to-parameter ratio = 18.6.

In the title compound, $[PtCl(C_{27}H_{35}N_3)]Cl\cdot C_7H_8$, the Pt^{II} atom is coordinated in a pseudo-square-planar fashion by the N atoms of a 4,4',4''-tri-*tert*-butyl-2,2':6',2''-terpyridine (tbtrpy) ligand and a Cl atom. The Pt—N distance of the N atom on the central pyridine is 1.941 (4) Å, while the peripheral N atoms have Pt—N distances of 2.015 (4) and 2.013 (4) Å. The Pt—Cl bond distance is 2.3070 (10) Å. The cations pack as dimers in a head-to-tail orientation with an intermolecular Pt···Pt distance of 3.2774 (3) Å and Pt···N distances of 3.599 (4), 3.791 (4) and 4.115 (4) Å. The solvent molecule is disordered and occupies two positions with a ratio of 0.553 (6):0.447 (6).

Related literature

For crystal structures of the title cation, $[(tbtrpy)PtCl]^+$, see: Batrice *et al.* (2010); Lai *et al.* (1999). For head-to-tail packing of related terpyridine complexes with close Pt···Pt distances, see: Bailey *et al.* (1995); Sengul (2004). For the synthesis of [(tbtrpy)PtCl]Cl, see: Howe-Grant & Lippard (1980).

Experimental

Crystal data

[PtCl(C₂₇H₃₅N₃)]Cl·C₇H₈ $M_r = 759.70$ Monoclinic, $P2_1/c$ a = 9.4418 (3) Å b = 20.0002 (7) Å c = 17.2321 (6) Å $\beta = 91.948$ (1)°

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.387, T_{max} = 0.677$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.108$ S = 1.056647 reflections 358 parameters $V = 3252.19 (19) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 4.51 \text{ mm}^{-1}$ T = 100 K $0.26 \times 0.21 \times 0.09 \text{ mm}$

37919 measured reflections 6647 independent reflections 6232 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

14 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.47$ e Å⁻³ $\Delta \rho_{min} = -2.78$ e Å⁻³

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Welch Foundation (AD-0007) for a chemistry department grant supporting undergraduate research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2164).

References

- Bailey, J. A., Hill, M. G., Marsh, R. E., Miskowski, V. M., Schaefer, W. P. & Gray, H. B. (1995). *Inorg. Chem.* 34, 4591–4599.
- Batrice, R. J., Smucker, B. W. & Nesterov, V. N. (2010). Acta Cryst. E66, m1702-m1703.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Howe-Grant, M. & Lippard, S. J. (1980). Inorg. Synth. 20, 101-105.
- Lai, S.-W., Chan, M. C. W., Cheung, K.-K. & Che, C.-M. (1999). *Inorg. Chem.* **38**, 4262–4267.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sengul, A. (2004). Turk. J. Chem. 28, 667-672.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m1704 [doi:10.1107/S1600536810048750]

Chlorido(4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine)platinum(II) chloride toluene monosolvate

R. J. Batrice, V. N. Nesterov and B. W. Smucker

Comment

The bond distances and angles around the platinum atom in the title structure are all similar to the structures of the perchlorate (Lai, *et al.*, 1999) and tetrafluoroborate salts (Batrice *et al.* 2010) of the $[(tbtrpy)PtCl]^+$ complex. The cations in these structures all pack in head-to-tail dimers. Interestingly, the interplanar (Pt, Cl and N atoms) distance between the two cations seems to be related to the size of the anion with the Cl⁻, BF₄⁻, and ClO₄⁻ being 3.283, 3.390, and 3.536 Å, respectively. In addition to a smaller counterion, the structure of the title complex contains a toluene molecule. This suggests that the solvent molecule may also influence the ability of these types of complexes to interact significantly with each other (Bailey, *et al.*, 1995).

The short Pt(1)—Pt(1') distance, 3.2774 (3) Å, of the title complex is similar to the intermolecular Pt—Pt distance in the structures of [(trpy)PtCl]Cl, 3.397 Å, (Sengul, 2004) and [(trpy)PtCl]ClO₄, 3.269 Å, (Bailey *et al.*, 1995). This indicates that the bulky *tert*-Butyl groups of the tbtrpy ligand do not appear to restrict the ability of this complex to form suitable M—M and/or π - π interactions between the two molecules of the dimer.

The solvent molecule is disordered and occupies two positions with a ratio of 0.553 (6):0.447 (6).

Experimental

[(tbtrpy)PtCl]Cl was synthesized according to modifications on a published procedure (Howe-Grant *et al.*, 1980). This [(tbtrpy)PtCl]⁺ complex was reacted with various aromatic thiol ligands (SAr). Crystals of the title compound were grown from the slow evaporation of an acetonitrile/toluene solution containing [(tbtrpy)Pt(SAr)]Cl and [(tbtrpy)PtCl]Cl.

Refinement

H atoms attached to C atoms were placed in idealized positions (C—H = 0.95-0.98 Å) and allowed to ride on their parent atoms. All H atoms were constrained so that $U_{iso}(H)$ were equal to $1.2U_{eq}$ or $1.5U_{eq}$ of their respective parent atoms. The solvent molecule is disordered and occupies two positions with a ratio of 0.553 (6): 0.447 (6). Aromatic C atoms were fitted to a regular hexagon with default distances 1.390 Å (AFIX 66) and refined anisotropically. Both CH₃ groups were refined anisotropically with fixed C—C distances as 1.51 Å. The largest peak in the final Fourier difference map (1.51 e Å⁻³) was located 1.40 Å from the several disordered C atoms of the solvent. Figures

Fig. 1. View of title complex (50% probability displacement ellipsoids) without the toluene solvate.

Fig. 2. Mercury (Macrae, *et al.*, 2008) rendition of head-to-tail packing with Pt—Pt' distance in 3.2774(3) Å

Chlorido(4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine)platinum chloride toluene monosolvate

Crystal data	
[PtCl(C ₂₇ H ₃₅ N ₃)]Cl·C ₇ H ₈	F(000) = 1520
$M_r = 759.70$	$D_{\rm x} = 1.552 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9878 reflections
<i>a</i> = 9.4418 (3) Å	$\theta = 2.4 - 27.2^{\circ}$
b = 20.0002 (7) Å	$\mu = 4.51 \text{ mm}^{-1}$
c = 17.2321 (6) Å	T = 100 K
$\beta = 91.948 \ (1)^{\circ}$	Plate, yellow
$V = 3252.19 (19) \text{ Å}^3$	$0.26 \times 0.21 \times 0.09 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD diffractometer	6647 independent reflections
Radiation source: fine-focus sealed tube	6232 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
ω scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -11 \rightarrow 11$
$T_{\min} = 0.387, T_{\max} = 0.677$	$k = -24 \rightarrow 24$
37919 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.032$ Right for a sites	gen site location: inferred from neighbouring
$wR(F^2) = 0.108$ H-atom	n parameters constrained
S = 1.05 $w = 1/[$ where h	$\sigma^{2}(F_{o}^{2}) + (0.080P)^{2} + 5.P]$ $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6647 reflections $(\Delta/\sigma)_{max}$	ax = 0.008
358 parameters $\Delta \rho_{max}$ =	$= 1.47 \text{ e} \text{ Å}^{-3}$
14 restraints $\Delta \rho_{min} =$	$= -2.78 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1	• ,		. 1		. 1.	1 ,		182	2
Fractional	atomic	coordinates	and	isotroi	nc or i	2auivalent	t isotroi	nc dis	nlacement	narameters	$(A^{-}$	17
1				1001.00			1001.01		proceentern		(/

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Pt1	0.588936 (16)	0.429628 (7)	0.502253 (9)	0.01709 (9)	
C11	0.80289 (11)	0.48538 (5)	0.50311 (6)	0.0234 (2)	
N1	0.5430 (5)	0.43245 (16)	0.3872 (2)	0.0212 (8)	
N2	0.4112 (3)	0.38083 (19)	0.50120 (19)	0.0192 (8)	
N3	0.5802 (4)	0.40887 (18)	0.6163 (2)	0.0176 (7)	
C1	0.4201 (6)	0.3997 (3)	0.3663 (3)	0.0343 (7)	
C2	0.3788 (6)	0.3916 (3)	0.2892 (3)	0.0343 (7)	
H2A	0.2930	0.3690	0.2759	0.041*	
C3	0.4636 (7)	0.4170 (2)	0.2303 (3)	0.0317 (11)	
C4	0.5847 (6)	0.4531 (3)	0.2542 (3)	0.0346 (12)	
H4A	0.6420	0.4734	0.2166	0.041*	
C5	0.6209 (5)	0.4591 (2)	0.3320 (3)	0.0276 (10)	
H5A	0.7043	0.4831	0.3468	0.033*	
C6	0.3424 (5)	0.3720 (2)	0.4324 (2)	0.0189 (8)	
C7	0.2114 (5)	0.3402 (2)	0.4302 (3)	0.0210 (9)	
H7A	0.1619	0.3328	0.3820	0.025*	
C8	0.1530 (4)	0.3190 (2)	0.4998 (2)	0.0190 (8)	
C9	0.2314 (4)	0.3270 (2)	0.5698 (3)	0.0197 (8)	
H9A	0.1957	0.3110	0.6171	0.024*	
C10	0.3625 (4)	0.3590 (2)	0.5688 (2)	0.0171 (8)	
C11	0.4619 (4)	0.3728 (2)	0.6359 (2)	0.0177 (8)	
C12	0.4448 (4)	0.3510 (2)	0.7101 (2)	0.0194 (8)	
H12A	0.3620	0.3267	0.7222	0.023*	
C13	0.5482 (5)	0.3639 (2)	0.7686 (2)	0.0204 (8)	

C14	0.6643 (5)	0.4025 (2)	0.7476 (3)	0.0232 (9)	
H14A	0.7348	0.4144	0.7858	0.028*	
C15	0.6773 (5)	0.4234 (2)	0.6722 (3)	0.0211 (9)	
H15A	0.7579	0.4489	0.6592	0.025*	
C16	0.4265 (8)	0.4015 (3)	0.1449 (3)	0.0423 (15)	
C17	0.4511 (8)	0.3261 (3)	0.1326 (3)	0.0464 (15)	
H17A	0.3892	0.3006	0.1661	0.070*	
H17B	0.5503	0.3153	0.1457	0.070*	
H17C	0.4296	0.3147	0.0782	0.070*	
C18	0.2729 (9)	0.4188 (3)	0.1272 (4)	0.058 (2)	
H18A	0.2554	0.4653	0.1421	0.087*	
H18B	0.2119	0.3891	0.1565	0.087*	
H18C	0.2520	0.4133	0.0715	0.087*	
C19	0.5205 (11)	0.4413 (4)	0.0910 (3)	0.072 (3)	
H19A	0.5057	0.4892	0.0992	0.109*	
H19B	0.4959	0.4299	0.0369	0.109*	
H19C	0.6201	0.4302	0.1024	0.109*	
C20	0.0069 (5)	0.2843 (2)	0.4993 (3)	0.0242 (9)	
C21	-0.0735 (5)	0.3042 (3)	0.5714 (3)	0.0385 (13)	
H21A	-0.1653	0.2814	0.5708	0.058*	
H21B	-0.0885	0.3527	0.5713	0.058*	
H21C	-0.0181	0.2914	0.6181	0.058*	
C22	0.0365 (7)	0.2091 (3)	0.5021 (5)	0.061 (2)	
H22A	-0.0532	0.1848	0.5053	0.092*	
H22B	0.0972	0.1988	0.5478	0.092*	
H22C	0.0843	0.1956	0.4550	0.092*	
C23	-0.0820 (5)	0.3035 (3)	0.4267 (3)	0.0364 (12)	
H23A	-0.1783	0.2859	0.4310	0.055*	
H23B	-0.0389	0.2846	0.3807	0.055*	
H23C	-0.0857	0.3523	0.4222	0.055*	
C24	0.5345 (5)	0.3346 (2)	0.8503 (3)	0.0256 (9)	
C25	0.3910 (5)	0.3546 (3)	0.8826 (3)	0.0318 (11)	
H25A	0.3847	0.3380	0.9359	0.048*	
H25B	0.3143	0.3352	0.8502	0.048*	
H25C	0.3824	0.4035	0.8825	0.048*	
C26	0.6550 (5)	0.3573 (3)	0.9056 (3)	0.0318 (11)	
H26A	0.6420	0.3378	0.9571	0.048*	
H26B	0.6544	0.4061	0.9095	0.048*	
H26C	0.7458	0.3424	0.8858	0.048*	
C27	0.5403 (6)	0.2585 (3)	0.8428 (3)	0.0352 (12)	
H27A	0.5393	0.2382	0.8946	0.053*	
H27B	0.6274	0.2456	0.8173	0.053*	
H27C	0.4580	0.2429	0.8117	0.053*	
Cl2	0.14340 (13)	0.24444 (6)	0.74948 (7)	0.0315 (3)	
C1A	0.9381 (7)	0.0032 (4)	0.6429 (3)	0.067 (4)	0.553 (6)
C2A	0.9481 (12)	0.0561 (3)	0.6952 (5)	0.081 (5)	0.553 (6)
H2AA	0.9471	0.1008	0.6768	0.097*	0.553 (6)
C3A	0.9594 (12)	0.0434 (4)	0.7745 (4)	0.068 (4)	0.553 (6)
НЗАА	0.9662	0.0795	0.8103	0.081*	0.553 (6)

C4A	0.9608 (9)	-0.0221 (5)	0.8015 (3)	0.050 (4)	0.553 (6)
H4AA	0.9686	-0.0307	0.8557	0.060*	0.553 (6)
C5A	0.9509 (11)	-0.0749 (3)	0.7492 (5)	0.049 (3)	0.553 (6)
H5AA	0.9518	-0.1197	0.7676	0.059*	0.553 (6)
C6A	0.9395 (10)	-0.0623 (3)	0.6699 (4)	0.059 (3)	0.553 (6)
H6AA	0.9327	-0.0984	0.6342	0.070*	0.553 (6)
C7A	0.9269 (10)	0.0104 (4)	0.5583 (4)	0.0343 (7)	0.553 (6)
H7AA	0.8482	-0.0170	0.5378	0.051*	0.553 (6)
H7AB	1.0154	-0.0045	0.5357	0.051*	0.553 (6)
H7AC	0.9097	0.0574	0.5449	0.051*	0.553 (6)
C1B	0.9217 (9)	0.0531 (4)	0.6741 (5)	0.067 (4)	0.447 (6)
C2B	0.9072 (14)	-0.0135 (5)	0.6522 (5)	0.081 (5)	0.447 (6)
H2BA	0.8806	-0.0245	0.6001	0.097*	0.447 (6)
C3B	0.9319 (16)	-0.0640 (4)	0.7064 (7)	0.068 (4)	0.447 (6)
H3BA	0.9220	-0.1095	0.6914	0.081*	0.447 (6)
C4B	0.9709 (13)	-0.0479 (5)	0.7826 (6)	0.050 (4)	0.447 (6)
H4BA	0.9877	-0.0824	0.8197	0.060*	0.447 (6)
C5B	0.9853 (13)	0.0187 (5)	0.8046 (4)	0.049 (3)	0.447 (6)
H5BA	1.0120	0.0297	0.8567	0.059*	0.447 (6)
C6B	0.9607 (12)	0.0692 (4)	0.7504 (5)	0.059 (3)	0.447 (6)
H6BA	0.9706	0.1147	0.7654	0.070*	0.447 (6)
C7B	0.8956 (12)	0.1064 (5)	0.6175 (6)	0.0343 (7)	0.447 (6)
H7BA	0.9856	0.1203	0.5959	0.051*	0.447 (6)
H7BB	0.8520	0.1446	0.6431	0.051*	0.447 (6)
H7BC	0.8318	0.0901	0.5757	0.051*	0.447 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01831 (12)	0.01521 (12)	0.01768 (12)	-0.00046 (5)	-0.00049 (7)	-0.00152 (5)
Cl1	0.0202 (5)	0.0217 (5)	0.0284 (5)	-0.0019 (4)	0.0007 (4)	0.0000 (4)
N1	0.030 (2)	0.0149 (18)	0.0188 (19)	0.0005 (13)	0.0009 (16)	-0.0026 (13)
N2	0.023 (2)	0.0140 (18)	0.0207 (19)	0.0014 (13)	-0.0033 (15)	0.0005 (12)
N3	0.0180 (17)	0.0145 (16)	0.0199 (17)	-0.0012 (14)	-0.0036 (14)	0.0012 (14)
C1	0.0421 (19)	0.0285 (16)	0.0320 (16)	0.0018 (14)	-0.0020 (14)	0.0033 (13)
C2	0.0421 (19)	0.0285 (16)	0.0320 (16)	0.0018 (14)	-0.0020 (14)	0.0033 (13)
C3	0.052 (3)	0.020 (2)	0.022 (2)	-0.005 (2)	-0.006 (2)	0.0014 (19)
C4	0.058 (3)	0.024 (2)	0.022 (2)	-0.006 (2)	0.006 (2)	-0.0009 (19)
C5	0.035 (3)	0.023 (2)	0.025 (2)	-0.0054 (19)	0.0051 (19)	-0.0019 (18)
C6	0.022 (2)	0.0164 (19)	0.0178 (19)	0.0026 (16)	-0.0045 (16)	-0.0031 (15)
C7	0.024 (2)	0.0129 (19)	0.026 (2)	0.0012 (16)	-0.0086 (17)	-0.0027 (16)
C8	0.017 (2)	0.0133 (19)	0.026 (2)	0.0001 (16)	-0.0061 (16)	-0.0029 (16)
C9	0.018 (2)	0.016 (2)	0.025 (2)	0.0008 (16)	-0.0044 (16)	-0.0028 (16)
C10	0.018 (2)	0.0146 (19)	0.0185 (19)	0.0003 (15)	-0.0031 (15)	-0.0009 (15)
C11	0.0162 (19)	0.0140 (19)	0.023 (2)	-0.0018 (15)	-0.0022 (16)	-0.0024 (15)
C12	0.020 (2)	0.0142 (19)	0.024 (2)	-0.0014 (16)	-0.0033 (16)	-0.0012 (16)
C13	0.022 (2)	0.020 (2)	0.019 (2)	0.0005 (16)	-0.0052 (16)	-0.0010 (16)
C14	0.025 (2)	0.021 (2)	0.023 (2)	-0.0040 (18)	-0.0066 (17)	-0.0028 (17)

C15	0.021 (2)	0.019 (2)	0.024 (2)	-0.0023 (16)	-0.0040 (18)	-0.0015 (16)
C16	0.085 (5)	0.024 (3)	0.018 (2)	-0.020 (3)	-0.005 (3)	0.000 (2)
C17	0.085 (5)	0.030 (3)	0.025 (3)	-0.018 (3)	0.009 (3)	-0.006 (2)
C18	0.098 (6)	0.037 (3)	0.037 (3)	-0.009 (3)	-0.031 (4)	0.002 (3)
C19	0.150 (8)	0.052 (4)	0.016 (3)	-0.061 (5)	0.006 (4)	0.000 (3)
C20	0.017 (2)	0.019 (2)	0.036 (2)	-0.0056 (17)	-0.0070 (18)	-0.0045 (18)
C21	0.023 (2)	0.060 (4)	0.032 (3)	-0.010 (2)	-0.003 (2)	0.005 (2)
C22	0.038 (3)	0.020 (3)	0.124 (7)	-0.009(2)	-0.016 (4)	-0.002 (3)
C23	0.021 (2)	0.057 (4)	0.031 (3)	-0.009 (2)	-0.005 (2)	-0.010 (2)
C24	0.031 (2)	0.024 (2)	0.021 (2)	-0.0055 (18)	-0.0064 (18)	0.0030 (18)
C25	0.034 (3)	0.042 (3)	0.019 (2)	-0.008 (2)	-0.0038 (19)	0.000 (2)
C26	0.036 (3)	0.038 (3)	0.021 (2)	-0.006 (2)	-0.0103 (19)	0.006 (2)
C27	0.051 (3)	0.026 (3)	0.027 (2)	-0.004 (2)	-0.015 (2)	0.010 (2)
Cl2	0.0288 (6)	0.0344 (6)	0.0309 (6)	-0.0016 (5)	-0.0036 (4)	0.0147 (5)
C1A	0.078 (8)	0.071 (8)	0.051 (6)	-0.039 (8)	-0.012 (6)	0.013 (5)
C2A	0.108 (12)	0.087 (10)	0.047 (6)	-0.017 (9)	-0.014 (7)	-0.031 (6)
C3A	0.049 (7)	0.065 (7)	0.090 (11)	-0.009 (5)	0.001 (6)	-0.052 (8)
C4A	0.022 (4)	0.087 (12)	0.043 (6)	0.032 (5)	0.017 (4)	0.013 (7)
C5A	0.042 (6)	0.052 (6)	0.055 (6)	0.007 (4)	0.007 (5)	0.009 (5)
C6A	0.042 (6)	0.049 (6)	0.086 (9)	-0.014 (4)	0.018 (6)	-0.024 (5)
C7A	0.0421 (19)	0.0285 (16)	0.0320 (16)	0.0018 (14)	-0.0020 (14)	0.0033 (13)
C1B	0.078 (8)	0.071 (8)	0.051 (6)	-0.039 (8)	-0.012 (6)	0.013 (5)
C2B	0.108 (12)	0.087 (10)	0.047 (6)	-0.017 (9)	-0.014 (7)	-0.031 (6)
C3B	0.049 (7)	0.065 (7)	0.090 (11)	-0.009 (5)	0.001 (6)	-0.052 (8)
C4B	0.022 (4)	0.087 (12)	0.043 (6)	0.032 (5)	0.017 (4)	0.013 (7)
C5B	0.042 (6)	0.052 (6)	0.055 (6)	0.007 (4)	0.007 (5)	0.009 (5)
C6B	0.042 (6)	0.049 (6)	0.086 (9)	-0.014 (4)	0.018 (6)	-0.024 (5)
C7B	0.0421 (19)	0.0285 (16)	0.0320 (16)	0.0018 (14)	-0.0020 (14)	0.0033 (13)
Geometric p	arameters (Å, °)					
Pt1—N2		1 941 (4)	C21-	-H21A	0.98	00
Pt1—N3		2.013 (4)	C21-	-H21B	0.98	00
Pt1—N1		2.015 (4)	C21-	-H21C	0.98	00
Pt1—Cl1		2.3070 (10)	C22-	-H22A	0.98	00
Pt1—Pt1 ⁱ		3.2774 (3)	C22-	-H22B	0.98	00
N1-C5		1.333 (6)	C22-	-H22C	0.98	00
N1-C1		1.371 (7)	C23-	-H23A	0.98	00
N2-C10		1.340 (5)	C23-	-H23B	0.98	00
N2-C6		1.344 (5)	C23-	—Н23С	0.98	00
N3—C15		1.338 (6)	C24-	C27	1.52	8 (7)
N3—C11		1.381 (5)	C24-	C26	1.52	9 (6)
		× /				

C24—C25

C25—H25A

С25—Н25В

C25—H25C

C26—H26A

C26—H26B

C26—H26C

1.536 (7)

0.9800

0.9800

0.9800

0.9800

0.9800

0.9800

1.381 (7)

1.483 (7)

1.408 (8)

1.402 (8)

1.531 (7)

1.378 (7)

0.9500

C1-C2

C1-C6

C2—C3

C2—H2A

C3—C4

C3—C16

C4—C5

C4—H4A	0.9500	C27—H27A	0.9800
С5—Н5А	0.9500	С27—Н27В	0.9800
C6—C7	1.391 (6)	С27—Н27С	0.9800
С7—С8	1.402 (6)	C1A—C2A	1.3900
С7—Н7А	0.9500	C1A—C6A	1.3900
C8—C9	1.403 (6)	C1A—C7A	1.465 (6)
C8—C20	1.544 (6)	С2А—С3А	1.3900
C9—C10	1.393 (6)	С2А—Н2АА	0.9500
С9—Н9А	0.9500	C3A—C4A	1.3900
C10—C11	1.490 (5)	СЗА—НЗАА	0.9500
C11—C12	1.365 (6)	C4A—C5A	1.3900
C12—C13	1.404 (6)	С4А—Н4АА	0.9500
C12—H12A	0.9500	C5A—C6A	1.3900
C13—C14	1.398 (6)	С5А—Н5АА	0.9500
C13—C24	1.534 (6)	С6А—Н6АА	0.9500
C14—C15	1.375 (7)	С7А—Н7АА	0.9800
C14—H14A	0.9500	С7А—Н7АВ	0.9800
C15—H15A	0.9500	С7А—Н7АС	0.9800
C16—C18	1.511 (11)	C1B—C2B	1.3900
C16—C19	1.530 (8)	C1B—C6B	1.3900
C16—C17	1.541 (8)	C1B—C7B	1.461 (6)
С17—Н17А	0.9800	C2B—C3B	1.3900
C17—H17B	0.9800	C2B—H2BA	0.9500
С17—Н17С	0.9800	C3B—C4B	1.3900
C18—H18A	0.9800	СЗВ—НЗВА	0.9500
C18—H18B	0.9800	C4B—C5B	1.3900
C18—H18C	0.9800	C4B—H4BA	0.9500
С19—Н19А	0.9800	C5B—C6B	1.3900
С19—Н19В	0.9800	C5B—H5BA	0.9500
С19—Н19С	0.9800	С6В—Н6ВА	0.9500
C20—C22	1.529 (7)	С7В—Н7ВА	0.9800
C20—C21	1.530 (7)	С7В—Н7ВВ	0.9800
C20—C23	1.532 (7)	С7В—Н7ВС	0.9800
N2—Pt1—N3	80.87 (14)	C22—C20—C8	106.3 (4)
N2—Pt1—N1	81.25 (15)	C21—C20—C8	110.2 (4)
N3—Pt1—N1	162.06 (16)	C23—C20—C8	110.8 (4)
N2—Pt1—Cl1	178.70 (11)	C20—C21—H21A	109.5
N3—Pt1—C11	99.11 (10)	C20—C21—H21B	109.5
N1—Pt1—Cl1	98.72 (12)	H21A—C21—H21B	109.5
C5—N1—C1	119.1 (4)	C20—C21—H21C	109.5
C5—N1—Pt1	127.4 (3)	H21A—C21—H21C	109.5
C1—N1—Pt1	113.4 (3)	H21B—C21—H21C	109.5
C10—N2—C6	123.7 (4)	C20—C22—H22A	109.5
C10—N2—Pt1	118.5 (3)	C20—C22—H22B	109.5
C6—N2—Pt1	117.8 (3)	H22A—C22—H22B	109.5
C15—N3—C11	118.5 (4)	C20—C22—H22C	109.5
C15—N3—Pt1	127.4 (3)	H22A—C22—H22C	109.5
C11—N3—Pt1	114.0 (3)	H22B—C22—H22C	109.5
N1—C1—C2	121.2 (5)	C20—C23—H23A	109.5
	· · ·		

N1—C1—C6	114.4 (4)	С20—С23—Н23В	109.5
C2—C1—C6	124.4 (5)	H23A—C23—H23B	109.5
C1—C2—C3	120.2 (5)	C20—C23—H23C	109.5
C1—C2—H2A	119.9	H23A—C23—H23C	109.5
С3—С2—Н2А	119.9	H23B—C23—H23C	109.5
C4—C3—C2	116.8 (5)	C27—C24—C26	108.7 (4)
C4—C3—C16	122.9 (5)	C27—C24—C13	107.4 (4)
C2—C3—C16	120.2 (5)	C26—C24—C13	112.0 (4)
C5—C4—C3	120.3 (5)	C27—C24—C25	109.0 (4)
С5—С4—Н4А	119.9	C26—C24—C25	110.1 (4)
C3—C4—H4A	119.9	C13—C24—C25	109.6 (4)
N1C5C4	122.3 (5)	C24—C25—H25A	109.5
N1—C5—H5A	118.8	С24—С25—Н25В	109.5
С4—С5—Н5А	118.8	H25A—C25—H25B	109.5
N2—C6—C7	119.1 (4)	С24—С25—Н25С	109.5
N2	113.1 (4)	H25A—C25—H25C	109.5
C7—C6—C1	127.8 (4)	H25B—C25—H25C	109.5
C6—C7—C8	119.3 (4)	С24—С26—Н26А	109.5
С6—С7—Н7А	120.3	С24—С26—Н26В	109.5
С8—С7—Н7А	120.3	H26A—C26—H26B	109.5
C7—C8—C9	119.3 (4)	С24—С26—Н26С	109.5
C7—C8—C20	120.6 (4)	H26A—C26—H26C	109.5
C9—C8—C20	120.1 (4)	H26B—C26—H26C	109.5
C10—C9—C8	119.1 (4)	С24—С27—Н27А	109.5
C10—C9—H9A	120.5	C24—C27—H27B	109.5
С8—С9—Н9А	120.5	H27A—C27—H27B	109.5
N2-C10-C9	1194(4)	C24—C27—H27C	109.5
N_{2} C10 C11	112.9 (4)	$H_{27}A - C_{27} - H_{27}C$	109.5
C9-C10-C11	127.7(4)	H_{27B} C_{27} H_{27C}	109.5
C12-C11-N3	121.2(4)	$C^2A - C^1A - C^6A$	120.0
C12 - C11 - C10	121.2(1) 125.2(4)	C_{2A} C_{1A} C_{7A}	124.9 (5)
N3_C11_C10	123.2(1) 113.6(4)	C6A - C1A - C7A	121.9(5) 1151(5)
$C_{11} - C_{12} - C_{13}$	120.8(4)	C_{3A} C_{2A} C_{1A}	120.0
$C_{11} = C_{12} = C_{13}$	110.6	$C_{3A} = C_{2A} = C_{1A}$	120.0
C12 - C12 - H12A	119.0	$C_{2A} = C_{2A} = H_{2AA}$	120.0
C13 - C12 - C12	119.0	$C_{1A} = C_{2A} = C_{2A}$	120.0
C14 - C13 - C12	110.0(4)	C4A = C3A = C2A	120.0
C14 - C13 - C24	122.7 (4)	C4A - C3A - H3AA	120.0
C12 - C13 - C24	120.7 (4)	C2A—C3A—H3AA	120.0
C15 - C14 - C13	120.5 (4)	C_{3A} C_{4A} C_{5A}	120.0
C15C14H14A	119.7	C3A—C4A—H4AA	120.0
C13—C14—H14A	119.7	C5A—C4A—H4AA	120.0
N3—C15—C14	122.2 (4)	C4A—C5A—C6A	120.0
N3—C15—H15A	118.9	С4А—С5А—Н5АА	120.0
C14—C15—H15A	118.9	С6А—С5А—Н5АА	120.0
C18—C16—C19	109.3 (6)	C5A—C6A—C1A	120.0
C18—C16—C3	109.6 (5)	С5А—С6А—Н6АА	120.0
C19—C16—C3	111.1 (5)	С1А—С6А—Н6АА	120.0
C18—C16—C17	110.2 (5)	C2B—C1B—C6B	120.0
C19—C16—C17	109.3 (6)	C2B—C1B—C7B	120.3 (5)

C3—C16—C17	107.4 (4)	C6B—C1B—C7B	119.7 (5)
С16—С17—Н17А	109.5	C1B—C2B—C3B	120.0
С16—С17—Н17В	109.5	C1B—C2B—H2BA	120.0
H17A—C17—H17B	109.5	C3B—C2B—H2BA	120.0
С16—С17—Н17С	109.5	C4B—C3B—C2B	120.0
H17A—C17—H17C	109.5	С4В—С3В—Н3ВА	120.0
Н17В—С17—Н17С	109.5	С2В—С3В—НЗВА	120.0
C16-C18-H18A	109.5	C3B—C4B—C5B	120.0
C16-C18-H18B	109.5	C3B—C4B—H4BA	120.0
H18A—C18—H18B	109.5	C5B—C4B—H4BA	120.0
C16—C18—H18C	109.5	C4B—C5B—C6B	120.0
H18A—C18—H18C	109.5	C4B—C5B—H5BA	120.0
H18B-C18-H18C	109.5	C6B—C5B—H5BA	120.0
С16—С19—Н19А	109.5	C5B—C6B—C1B	120.0
C16—C19—H19B	109.5	С5В—С6В—Н6ВА	120.0
H19A—C19—H19B	109.5	С1В—С6В—Н6ВА	120.0
С16—С19—Н19С	109.5	С1В—С7В—Н7ВА	109.5
H19A—C19—H19C	109.5	C1B—C7B—H7BB	109.5
H19B—C19—H19C	109.5	Н7ВА—С7В—Н7ВВ	109.5
C22—C20—C21	109.1 (5)	C1B—C7B—H7BC	109.5
C22—C20—C23	111.5 (5)	Н7ВА—С7В—Н7ВС	109.5
C21—C20—C23	108.9 (4)	H7BB—C7B—H7BC	109.5
0 = 1 = 1 = 1 = 1			

Symmetry codes: (i) -x+1, -y+1, -z+1.

